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Supplementary Methods 
Scanning.  
All scans were run using a 180kv x-ray tube containing a diamond-tungsten target, with the 
voltage, current, and detector capture time adjusted for each scan to maximize absorption range 
for each specimen. Raw x-ray data were processed using GE’s proprietary datos|x software 
version 2.3 to produce a series of tomogram images and volumes, with final voxel resolutions 
ranging from 1 to 76 µm. The resulting microCT volume files were imported into VG StudioMax 
version 3.2.4 (Volume Graphics, Heidelberg, Germany), the skull isolated using VG StudioMax’s 
suite of segmentation tools, and then exported as high-fidelity shape files (ply format).  
 
Species sampling. 
Of the 158 taxa in our dataset, three scanned museum specimens are only identified to genus: 
CAS 250653 (Amietia), CAS 156600 (Capensibufo), and CAS 7265 (Kassina). These taxa were 
treated as Amietia amietia, Capensibufo rosei, and Kassina senegalensis in order to be 
incorporated into the phylogenetic comparative analyses.  
 
Ancestral state reconstructions.  
The models were assigned an equal prior probability using a uniform set-partitioning prior, and 
the root state frequencies were estimated using a flat Dirichlet prior. The rates of 
hyperossification gain and loss were drawn from an exponential distribution with a mean of 10 
expected character state transitions over the tree. The MCMC was run for 22,000 iterations, the 
first 2000 iterations were discarded as burn-in, and samples were logged every 10 iterations. 
Convergence of the MCMC was confirmed by using Tracer v1.6 to ensure that analyses had 
reached stationarity. The scripts for the analyses are available in the code repository at 
https://github.com/dpaluh/hyperossification. 
 
Geometric morphometrics.  
All three-dimensional geometric morphometric analyses were completed in the R package 
geomorph version 3.0.3 (1). The scripts and landmark data for all analyses are available in the 
code repository at https://github.com/dpaluh/hyperossification. 
 
Landmarking. Thirty-six fixed landmarks were digitized on each shape file corresponding to 
homologous and repeatable points (Fig. S1). Landmarks 1–4 correspond to the foramen 
magnum, landmarks 5–6 correspond to the posterior extent of the skull roof, landmarks 7–8 
correspond to the occipital condyles, landmarks 9–12 correspond to the parasphenoid, landmarks 
13–14 correspond to the posterior extent of the jaw joint (quadrate), landmarks 15–16 correspond 
to the posterior extent of the squamosal (otic ramus), landmarks 17–18 correspond to the anterior 
extent of the squamosal (zygomatic ramus), landmarks 19–20 correspond to the preorbital 
process of the maxilla, landmarks 21–22 correspond to the maxillary process of the nasal, 
landmarks 23–28 correspond to the premaxilla,  landmarks 29–30 correspond to the anterior 
extent of the nasals, landmarks 31–32 correspond to the anterolateral extent of the sphenethmoid 
(anterior region of skull roof), landmarks 33–34 correspond to the posterolateral extent of the 
frontoparietal otic flange (posterior region of skull roof), and landmarks 35–36 correspond to the 
anterior extent of the sphenethmoid. These landmarks were chosen to capture the external shape 
diversity of frog skulls, and therefore, no landmarks were placed on the elements that form the 
internal structure of the cranium (e.g., pterygoid, neopalatine, vomer). A future avenue of 
research is to measure the relative shape and size of these internal elements to test if 
hyperossification and expansion of the external cranial structures are correlated with the 
reduction of the internal structures due to an upper limit to the amount of bone that can be 
invested in the skull, as hypothesized by Trueb (2).  
 
Skull shape diversity and hyperossification. To better characterize skull diversity across all 
frog families, we tested for phylogenetic signal in shape and centroid size using the Procrustes 
tangent coordinates. We performed a phylogenetic multivariate analysis of variance (MANOVA) 
to test if mean shape differed between hyperossified and non-hyperossified taxa to identify the 
presence or absence of morphological divergence between these two groups. We also estimated 
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morphological disparity and net rates of skull shape evolution for hyperossified and non-
hyperossified species to test if there is a significant difference in Procrustes variance and 
morphological evolutionary rates between these two groups. 
 
Allometry.  We conducted a phylogenetic regression to examine the relationship between skull 
centroid size (the square root of summed squared distances of landmarks from the configuration 
centroid [3]) and skull shape. A phylogenetic MANOVA was conducted to test if there is a 
significant interaction between hyperossification and centroid size in influencing skull shape. We 
also tested for allometric slope differences between hyperossified and non-hyperossified frogs to 
identify whether there is a different size to shape relationship for hyperossified taxa. A 
multivariate regression plot was generated to visualize these relationships.  
 
Microhabitat. Previous work has proposed that microhabitat use is correlated with skull shape (2, 
4) and that hyperossification may function to prevent evaporative water loss (4, 5). An ideal metric 
to test the relationship between hyperossification and osmoregulation would be rates of 
evaporative water loss across taxa (5), but unfortunately, these data are available for very few 
species. Alternatively, we test if microhabitat use is correlated with skull shape and has a 
significant interaction with hyperossification after accounting for each main effect using a 
phylogenetic MANOVA. Microhabitat data for the species in our dataset were largely gathered 
from Moen et al. (6), IUCN (7), and AmphibiaWeb (8) and divided into four categories: aquatic, 
arboreal, fossorial, and terrestrial (see Dataset S1 for data and references on individual species). 
Moen et al. (6) additionally categorized species as semi-aquatic, semi-arboreal, and torrential; 
these taxa were coded as aquatic, arboreal, and aquatic, respectively, in our analyses. If cranial 
hyperossification primarily functions to prevent evaporative water loss, we predicted that it should 
be rare in aquatic frogs but common in burrowing frogs, which often live in highly arid 
environments. 
 
Feeding biology. Most anurans are considered generalist, gape-limited predators that consume 
any prey that fits within their mouths, but a subset of species have specialized diets. For example, 
a specialization of eating termites and ants has repeatedly evolved in frogs (9). Conversely, some 
frog species have evolved specialized diets that include large, hard prey items, including 
vertebrates (10). Cranial hyperossification may have evolved in these often large-bodied frogs to 
strengthen the skull so that it can withstand higher forces during feeding of large prey (2). We 
identified the diet of frogs in our dataset through a review of the literature (see Dataset S1 for 
data and references on individual species); species are classified as vertebrate predators if a 
record of vertebrate predation is known or as invertebrate predators if no records of vertebrate 
predation exist. Many anuran species lack dietary records (78 of 158 species in our dataset have 
no published records to our knowledge), and these species were presumed invertebrate 
predators in our analyses because most frogs are generalist insectivores (10). We additionally 
classified species as vertebrate predators, invertebrate predators, and unknown diet for the 
following analyses, which did not influence results (see Table S5, Table S6, Fig. S7). We 
conducted a phylogenetic MANOVA to test if anuran vertebrate predators and invertebrate 
predators differ in skull shape and to determine if a significant factor interaction exists between 
hyperossification and vertebrate predation. The presence or absence of odontoid fangs on the 
lower jaw was recorded for all specimens in our dataset, as these structures may be associated 
with a specialized diet that contains a high proportion of large prey (11).  
 
Phragmosis. Phragmotic behavior occurs when an animal uses their head to fill cavities or block 
holes (12, 13). Anurans that use phragmosis can flex their head at a 90-degree angle relative to 
their body to the plugging of holes (14). Several frog species use phragmosis in bromeliads, rock 
crevices, or burrows, and it has been suggested that a close association exists between this 
behavior and an enlarged hyperossified skull to create an effective barrier against both predators 
and desiccation (13). We identified frog species that have phragmotic behavior through a review 
of the literature (Appendix S1, Dataset 1) and conducted a phylogentic MANOVA to test if 
phragmotic behavior is associated with skull shape and has a significant interaction with the 
presence of hyperossification.  
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Figure S1. Thirty-six fixed landmarks digitized onto each specimen. See Supplementary Methods 
for description of landmark points. 
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Figure S2. Contmap (15) maximum likelihood ancestral state reconstructions of skull shape PC 
scores on the trimmed phylogeny of Jetz and Pyron (16). 
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Figure S3. Dermal sphenethmoid of Gastrotheca galeata (KU 219765). The dermal 
sphenethmoid, an unpaired diamond-shaped bone that lies between the nasals and frontoparietal 

and covers the endochondral sphenethmoid, is found in several of the casque-headed hylids 
(Aparasphenodon, Corythomantis, Itapotihyla, Osteocephalus, Osteopilus, Trachycephalus, and 

Triprion [13, 17]), and we have verified its suspected presence in G. galeata (18). 
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Figure S4. Trimmed phylogeny of Jetz and Pyron (16) from Fig. 1 with tip names. 
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Figure S5. PCA plots from Fig. 2.1 and 2.2 with taxon names. 
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Figure S6. Regression plot from Fig. 3 with taxon names. 
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Figure S7. PCA plots from Fig. 2.3 and 2.4 with points colored by diet states of invertebrate 
predator, unknown diet, and vertebrate predator. 
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Table S1. Posterior probability and Bayes Factors for the five Markov models of phenotypic 
character evolution sampled in the reversible-jump MCMC ancestral state reconstructions. 

  Bayes factors 
Model Model posterior 

probability 
0 to 1 

irreversible 
1 to 0 

irreversible  
1-rate 2-rate 

0 to 1 
irreversible 

0 - 5 0 0.01 

1 to 0 
irreversible 

0 0.2 - 0 0 

1-rate 0.91 729.4 3647 - 10.45 
2-rate 0.09 69.8 349 0.1 - 

 
 
Table S2. Post hoc pairwise comparison P values for microhabitat and skull shape. 

 aquatic arboreal fossorial terrestrial 
aquatic 1.00 * * * 
arboreal 0.005 1.00 * * 
fossorial 0.000 0.000 1.00 * 
terrestrial 0.008 0.033 0.001 1.00 

 
 
Table S3. Post hoc pairwise comparison P values testing for factor interaction between 
hyperossification and microhabitat influencing skull shape after accounting for each main effect. 
Significant differences in skull shape were found between hyperossified aquatic frogs and 
multiple other groups, but there are only 3 hyperossified aquatic frogs in our dataset.  

no.aqu no.arb no.fos no.ter yes.aqu yes.arb yes.fos yes.ter 

no.aquatic 1.00 * * * * * * * 

no.arboreal 0.953 1.00 * * * * * * 

no.fossorial 0.251 0.388 1.00 * * * * * 

no.terrestrial 0.985 0.964 0.084 1.00 * * * * 

yes.aquatic 0.029 0.044 0.0369 0.038 1.00 * * * 

yes.arboreal 0.694 0.443 0.184 0.526 0.006 1.00 * * 

yes.fossorial 0.951 0.954 0.893 0.938 0.133 0.216 1.00 * 

yes.terrestrial 0.197 0.360 0.774 0.036 0.007 0.008 0.942 1.00 

 
 
Table S4. Post hoc pairwise comparison P values testing for factor interaction between 
hyperossification (hyperossified, H; nonhyperossified, NH) and diet (invertebrate or vertebrate 
predator) influencing skull shape after accounting for each main effect.  

NH.invert_predator NH.vert_predator H.invert_predator H.vert_predator 

NH.invert_predator 1 * * * 

NH.vert_predator 0.866 1 * * 

H.invert_predator 0.973 0.514 1 * 

H.vert_predator 0.068 0.000 0.0586 1 
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Table S5. Post hoc pairwise comparison P values for diet (invertebrate predator, vertebrate 
predator, unknown diet) and skull shape. 

 invert_predator unknown vert_predator 
invert_predator 1 * * 
unknown 0.119 1 * 
vert_predator 0.000 0.000 1 

 
 
Table S6. Post hoc pairwise comparison P values testing for factor interaction between 
hyperossification (hyperossified, H; nonhyperossified, NH) and diet (invertebrate predator, 
vertebrate predator, unknown diet) influencing skull shape after accounting for each main effect. 
 NH.invert NH.unknown NH.vert_ H.invert H.unknown H.vert 
NH.invert_predator 1 * * * * * 
NH.unknown 0.180 1 * * * * 
NH.vert_predator 0.641 0.925 1 * * * 
H.invert_predator 0.598 0.961 0.467 1 * * 
H.unknown 0.924 0.407 0.386 0.025 1 * 
H.vert_predator 0.254 0.134 0.000 0.005 0.302 1 

 
 
Dataset S1. Species and specimens examined in this study with associated data and references. 
File available at https://github.com/dpaluh/hyperossification 
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